Regularized Symmetric Inde nite Systems in Interior Point Methods for Linear and Quadratic Optimization
نویسندگان
چکیده
This paper presents linear algebra techniques used in the implementation of an interior point method for solving linear programs and convex quadratic programs with linear constraints. New regularization techniques for Newton systems applicable to both symmetric positive de nite and symmetric inde nite systems are described. They transform the latter to quaside nite systems known to be strongly factorizable to a form of Cholesky-like factorization. Two di erent regularization techniques, primal and dual, are very well suited to the (infeasible) primal-dual interior point algorithm. This particular algorithm, with an extension of multiple centrality correctors, is implemented in our solver HOPDM. Computational results are given to illustrate the potential advantages of the approach when applied to the solution of very large linear and convex quadratic programs.
منابع مشابه
Semideenite Programming
In semide nite programming one minimizes a linear function subject to the constraint that an a ne combination of symmetric matrices is positive semide nite. Such a constraint is nonlinear and nonsmooth, but convex, so semide nite programs are convex optimization problems. Semide nite programming uni es several standard problems (e.g., linear and quadratic programming) and nds many applications ...
متن کاملA primal-dual regularized interior-point method for convex quadratic programs
Interior-point methods in augmented form for linear and convex quadratic programming require the solution of a sequence of symmetric indefinite linear systems which are used to derive search directions. Safeguards are typically required in order to handle free variables or rank-deficient Jacobians. We propose a consistent framework and accompanying theoretical justification for regularizing the...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملPreconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization
A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...
متن کاملA full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کامل